Koprek, A.; Cojocaru-Mirédin, O.; Würz, R.; Freysoldt, C.; Gault, B.; Raabe, D.: Cd and Impurity Redistribution at the CdS/CIGS Interface After Annealing of CIGS-Based Solar Cells Resolved by Atom Probe Tomography. IEEE Journal of Photovoltaics 7 (1), 7762819, pp. 313 - 321 (2017)
Stoffers, A.; Cojocaru-Mirédin, O.; Seifert, W.; Zaefferer, S.; Riepe, S.; Raabe, D.: Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Progress in Photovoltaics: Research and Applications 23 (12), pp. 1742 - 1753 (2015)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Exploring the p-n junction region in Cu(In,Ga)Se2 thin-film solar cells at the nanometer-scale. Applied Physics Letters 101 (18), pp. 181603-1 - 181603-5 (2012)
Choi, P.; Cojocaru-Mirédin, O.; Wuerz, R.: Compositional gradients and impurity distributions in CuInSe2 thin-film solar cells studied by atom probe tomography. Surface and Interface Analysis 44 (11-12), pp. 1386 - 1388 (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.