Surendralal, S.; Todorova, M.; Neugebauer, J.: The Mg(0001)/H2O interface studied by empirical potentials and density functional. DPG-Frühjahrstagung 2017, Dresden, Germany (2017)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Zn-ions in water: An ab initio molecular dynamics study. ICMR Workshop - Workshop on Charged Systems and Solid/Liquid Interfaces, University of California , Santa Barbara, USA (2015)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Zn-ions in water: An ab initio molecular dynamics study. ICMR Workshop - Advances in oxide materials: Preparation, properties, performance, University of California, Santa Barbara, CA, USA (2014)
Todorova, M.; Neugebauer, J.: Electrochemical Pourbaix phase diagrams from ab initio calculations. XLII CALPHAD Conference, San Sebastian, Spain (2013)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of oxidizing species with the Mg(0001) surface: The role of electrostatic contributions. Connecting electrochemical and water simulations: Status and future challenges, Ringberg, Germany (2013)
Todorova, M.; Neugebauer, J.: Extending the concept of semiconductor defect chemistry to electrochemistry. Connecting electrochemical and water simulations: Status and future challenges, Ringberg, Germany (2013)
Todorova, M.; Neugebauer, J.: Extending the concept of semiconductor defect chemistry to electrochemistry. Workshop "Connecting electrochemical and water simulations: Status and future challenges", San Sebastian, Spain (2013)
Todorova, M.: On the accuracy of ion hydration enegies - An ab-initio study. Gordon Research Conference ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2012)
Bauer, K.-D.; Todorova, M.; Hingerl, K.; Neugebauer, J.: Ab-initio Study on Liquid Metal Embrittlement in the Fe/Zn System. International Workshop on Ab initio Description of Iron and Steel (ADIS2012), Ringberg, Germany (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Palm, M.; Neugebauer, J.: Theoretical study of the environmental effect of H-containing gases on Fe–Al surfaces. International Meeting on Iron Aluminide Alloys, Lanzarote, Canary Island, Spain (2011)
Todorova, M.; Valtiner, M.; Neugebauer, J.: Stabilisation of polar ZnO(0001) surfaces in dry and humid environment. FIESTAE - Frontiers in Interface Science: Theory and Experiment, Berlin, Germany (2011)
Todorova, M.; Valtiner, M.; Grundmeier, G.; Neugebauer, J.: Temperature Stabilised surface reconstructions at polar ZnO(0001). Gordon Research Seminar ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2010)
Todorova, M.; Neugebauer, J.: Towards an ab initio description of corrosion. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Surendralal, S.; Todorova, M.: Automated Calculations for Charged Point Defects in Magnesium Oxide and Iron Oxides. Master, Ruhr-Universität Bochum, GermanyRuhr-Universität Bochum, Bochum, Germany (2016)
Hübel, K.; Rohwerder, M.; Scheu, C.; Todorova, M.: Organizer of the workshop “Status and Future Challenges in Characterisation of Interfaces for Electrochemical Applications - Part 1” at the MPIE. (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…