Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Euromat 2013, Sevilla, Spain (2013)
Gutiérrez-Urrutia, I.; Seol, J.-B.; Marceau, R. K. W.; Choi, P.; Raabe, D.: Multi-scale characterization of advanced structural steels: from the micro to the atomic-scale. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, Hawai, USA (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Li, Y. J.; Choi, P.; Herbig, M.; Kostka, A.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Atomic Scale Understanding of 6.8 GPa Ultra-high Strength Pearlite. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, HI, USA (2013)
Raabe, D.; Choi, P.; Herbig, M.; Li, Y.; Zaefferer, S.; Kirchheim, R.: Iron – Mythology and High Tech: From Electronic Understanding to Bulk Nanostructuring of 1 Billion Tons. Summer School 2013 on Functional Solids – FERRUM - organized by Leibniz University Hannover, Goslar, Germany (2013)
Choi, P.-P.: Characterization of internal interfaces in Cu(In,Ga)Se2 thin-film solar cells using correlative microscopy. IEEE – Photovoltaic Specialist Conference, Denver, CO, USA (2013)
Cojocaru-Mirédin, O.; Choi, P.; Würz, R.; Raabe, D.: Exploring the internal interfaces in Cu(In,Ga)Se2 thin-film solar cells at the atomic-scale. 2013 MRS Spring Meeting & Exhibit, San Francisco, CA, USA (2013)
Raabe, D.; Li, Y.; Ponge, D.; Sandlöbes, S.; Choi, P.; Hickel, T.; Kirchheim, R.; Neugebauer, J.: Transformations in Steels. German-Chinese High-level Workshop on “Microstructure-driven Design and Performance of Advanced Metals”, Institute of Metals Research (IMR) of the Chinese Academy of Science (CAS), Shenyang, China (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…