Kang, S. G.; Gainov, R.; Heußen, D.; Bieler, S.; Sun, Z.; Weinberg, K.; Dehm, G.; Ramachandramoorthy, R.: Green laser powder bed fusion based fabrication and rate-dependent mechanical properties of copper lattices. Materials and Design 231, 112023 (2023)
Bieler, S.; Kang, S. G.; Heußen, D.; Ramachandramoorthy, R.; Dehm, G.; Weinberg, K.: Investigation of copper lattice structures using a Split Hopkinson Pressure Bar. Proceedings of Applied Mathematics and Mechanics, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) 21 (1), e202100155, (2021)
Ramachandramoorthy, R.: High strain rate testing of copper based micropillars and microlattices. 206 Departmental Seminar Series, Empa, Thun, Switzerland (2021)
Ramachandramoorthy, R.: Pushing the limits of microscale manufacturing and mechanical testing. Department of Material Science and Engineering Seminar Series, Tel-Aviv University, online, Tel-Aviv, Israel (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.