Pauna, H.; Souza Filho, I. R.; Kulse, M.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Fabritius, T.; Raabe, D.: In Situ Observation of Sustainable Hematite-Magnetite-Wustite-Iron Hydrogen Plasma Reduction. Metallurgical and Materials Transactions B 56 (4), pp. 3938 - 3949 (2025)
Pauna, H.; Ernst, D.; Zarl, M.; Souza Filho, I. R.; Kulse, M.; Büyükuslu, Ö.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Schenk, J.et al.; Fabritius, T.; Raabe, D.: The Optical Spectra of Hydrogen Plasma Smelting Reduction of Iron Ore: Application and Requirements. Steel Research International 95 (8), 2400028 (2024)
Springer, H.; Souza Filho, I. R.; Choisez, L.; Zarl, M. A.; Quick, C.; Horn, A.; Schenk, J.: Iron ore wires as consumable electrodes for the hydrogen plasma smelting reduction in future green steel production. Sustainable Materials and Technologies 39, e00785 (2024)
Fantin, A.; Maria Manzoni, A.; Springer, H.; Darvishi Kamachali, R.; Maaß, R.: Local lattice distortions and chemical short-range order in MoNbTaW. Materials Research Letters 12 (5), pp. 346 - 354 (2024)
Souza Filho, I. R.; Ma, Y.; Raabe, D.; Springer, H.: Fundamentals of Green Steel Production: On the Role of Gas Pressure During Hydrogen Reduction of Iron Ores. JOM-Journal of the Minerals Metals & Materials Society 75, pp. 2274 - 2286 (2023)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: The role of cementite on the hydrogen embrittlement mechanism in martensitic medium-carbon steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 859, 144204 (2022)
Pinson, M.; Springer, H.; Verbeken, K.; Depover, T.: The effect of an Al-induced ferritic microfilm on the hydrogen embrittlement mechanism in martensitic steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 851, 143587 (2022)
Pinson, M.; Das, S. M.; Springer, H.; Verbeken, K.; Depover, T.: The Role of an Al-induced Ferritic Microfilm in Martensitic Steels on the Hydrogen Embrittlement Mechanisms Revealed by Advanced Microscopic Characterization. Microscopy and Microanalysis 28 (S1), pp. 1622 - 1624 (2022)
Pinson, M.; Das, S. M.; Springer, H.; Depover, T.; Verbeken, K.: The addition of aluminum to brittle martensitic steels in order to increase ductility by forming a grain boundary ferritic microfilm. Scripta Materialia 213, 114606 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…