Rohwerder, M.; Stratmann, M.; de Boeck, A.; Ogle, K.; Rehnisch, O.; Reier, T.; Stellnberger, K.-H.; Steinbeck, C.; Wormuth, R.: Investigation of the delamination of polymer-coated zinc and steel surfaces with the scanning Kelvin probe in a climatic cycle test. GALVATECH 2001, Brussels, Belgium (2001)
Stratmann, M.; Vander Kloet, J.; Schmidt, W.; Hassel, A. W.: Investigations into the Role of Copper in AA2024-T3 Aluminium Alloys on Filiform Corrosion Advancement and the Role of Chromium in Corrosion Inhibition. 63. AGEF-Seminar, Düsseldorf, Germany (2001)
Rohwerder, M.; Stratmann, M.: The Scanning Kelvin Probe as a New Technique to Analyze Buried Interfaces. 196th meeting of the ECS, Honolulu, USA (1999)
Rohwerder, M.; Unger, M.; Lobnig, R. E.; Stratmann, M.: Role of ammonia sulfate particles in the corrosion of electronic devices. Eurocorr'99, Aachen, Germany (1999)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: On the influence of the electrode potential on growth and stability of thiol monolayer films: Scanning tunneling microscopic and electrochemical investigations. 3rd Indo-German Symposium on modern methods in electrochemistry, Bangalore, India (1996)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: Zum Einfluß des Elektrodenpotentials auf Wachstum und Zerstörung von Thiolfilmen. Bunsentagung, Jena, Germany (1996)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: The influence of the electrode potential on the self-assembly of decanethiol on the Au(111) surface. 188th Meeting of the ECS, Chicago, IL, USA (1995)
Rohwerder, M.; de Weldige, K.; Viefhaus, H.; Stratmann, M.: Adsorption selbst-organisierter Mercaptan-Monolagen auf Gold. Workshop on Development and Industrial Application of Scanning Probe Microscopes SXM1, Münster, Germany (1994)
Pang, B.; Stratmann, M.; Vogel, D.; Erbe, A.; Rohwerder, M.: Characterization of electrochemical double layer formed on Au (111) electrode: a KPM, FTIR and APXPS investigation. 2nd Annual APXPS Workshop, Berkeley, CA, USA (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.