Kang, S. G.; Gainov, R.; Heußen, D.; Bieler, S.; Sun, Z.; Weinberg, K.; Dehm, G.; Ramachandramoorthy, R.: Green laser powder bed fusion based fabrication and rate-dependent mechanical properties of copper lattices. Materials and Design 231, 112023 (2023)
Bieler, S.; Kang, S. G.; Heußen, D.; Ramachandramoorthy, R.; Dehm, G.; Weinberg, K.: Investigation of copper lattice structures using a Split Hopkinson Pressure Bar. Proceedings of Applied Mathematics and Mechanics, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) 21 (1), e202100155, (2021)
Ramachandramoorthy, R.: High strain rate testing of copper based micropillars and microlattices. 206 Departmental Seminar Series, Empa, Thun, Switzerland (2021)
Ramachandramoorthy, R.: Pushing the limits of microscale manufacturing and mechanical testing. Department of Material Science and Engineering Seminar Series, Tel-Aviv University, online, Tel-Aviv, Israel (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.