Tan, K. S.; Hassel, A. W.; Stratmann, M.: Design and construction of a micro-indenter for tribological investigations. Mat.-Wiss. Werkstofftech. 36, pp. 13 - 17 (2005)
Hassel, W.; Tan, K. S.; Stratmann, M.: Examination of particle-surface contact under tribo-corrosion conditions with a novel low force micro indenter. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Hassel, A. W.; Akiyama, E.; Smith, A.; Tan, K. S.; Stratmann, M.: Dynamic and Quasi Static Particle Impingement in Flow Corrosion. COST F2 2nd Workshop „Local Flow Effects in Hydrodynamic Systems”, Paris, France (2003)
Hassel, A. W.; Akiyama, E.; Smith, A.; Tan, K. S.; Stratmann, M.: Dynamic and Quasi Static Particle Impingement in Flow Corrosion. Seminar an der Graduate School of Engineering der Universität von Hokkaido, Sapporo, Japan (2003)
Smith, A. J.; Tan, K. S.; Stratmann, M.; Hassel, A. W.: Korrelation von “Jet impingement” und Mikroindentation Versuchen. 79. AGEF Seminar - 25 Jahre Elektrochemie in Düsseldorf, Düsseldorf, Germany (2004)
Tan, K. S.; Hassel, A. W.; Stratmann, M.: Micro-indenter for tribo-corrosion investigations. 5th European Symposium on Nanomechanical Testing, Hückelhoven, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…