Cha, S. C.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. Materials Science Forum 461–464, p. 1055 - 1055 (2004)
Cha, S. C.; Spiegel, M.: Studies on the local reactions of thermophoretic deposited alkali chloride particles on metal surfaces. In: NACE CORROSION‘ 04, 04533. NACE CORROSION‘ 04, New Orleans, LA, USA. (2004)
Cha, S. C.; Spiegel, M.: Local reaction between NaCl and KCl particles and metal surfaces. In: Proceedings of EUROCORR '04, 1. Proceedings of EUROCORR '04, Nice, France, 2004. (2004)
Cha, S. C.; Spiegel, M.: Studies on the local reactions of thermophoretic deposited alkali chloride particles on iron surfaces. NACE CORROSION‘ 04, New Orleans, LA, USA (2004)
Cha, S. C.; Spiegel, M.: Local reactions of KCl particles with Fe, Ni and Cr surfaces. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Cha, S. C.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. 6th Int. Symposium on High temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
Cha, S. C.; Vogel, D.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. 18. Stahlkolloquium, Eurogress Aachen, Aachen, Germany (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…