Calderón, L. A. Á.; Shakeel, Y.; Gedsun, A.; Forti, M.; Hunke, S.; Han, Y.; Hammerschmidt, T.; Aversa, R.; Olbricht, J.; Chmielowski, M.et al.; Stotzka, R.; Bitzek, E.; Hickel, T.; Skrotzki, B.: Management of reference data in materials science and engineering exemplified for creep data of a singlecrystalline Nibased superalloy. Acta Materialia 286, 120735 (2025)
Atila, A.; Bitzek, E.: Atomistic origins of deformation-induced structural anisotropy in metaphosphate glasses and its influence on mechanical properties. Journal of Non-Crystalline Solids 627, 122822 (2024)
Webler, R.; Baranova, P. N.; Karewar, S.; Möller, J. J.; Neumeier, S.; Göken, M.; Bitzek, E.: On the influence of Al-concentration on the fracture toughness of NiAl: Microcantilever fracture tests and atomistic simulations. Acta Materialia 234, 117996 (2022)
Hiremath, P.; Melin, S.; Bitzek, E.; Olsson, P. A. T.: Effects of interatomic potential on fracture behaviour in single- and bicrystalline tungsten. Computational Materials Science 207 (18), 111283 (2022)
Gabel, S.; Merle, B.; Bitzek, E.; Göken, M.: A new method for microscale cyclic crack growth characterization from notched microcantilevers and application to single crystalline tungsten and a metallic glass. Journal of Materials Research 37, pp. 2061 - 2072 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…