Roters, F.; Ma, A.; Raabe, D.: The Texture Component Crystal Plasticity Finite Element Method. Keynote lecture at the Third GAMM (Society for Mathematics and Mechanics) Seminar on Microstructures, Stuttgart, Germany (2004)
Raabe, D.: Metallkundliche Ursachen und mechanische Auswirkungen unvollständiger Rekristallisation. Werkstoffausschuß des Vereins Deutscher Eisenhüttenleute, VDEh, Düsseldorf, German (2004)
Raabe, D.: Polycrystal Mechanics of Metals and Polymers - Experiments and Theory. Colloquium Lecture at the Massachusetts Institute of Technology, Cambridge, USA (2003)
Wang, Y.; Roters, F.; Raabe, D.: Simulation of Texture and Anisotropy during Metal Forming with Respect to Scaling Aspects. 1st Colloquium Process Scaling, Bremen, Germany (2003)
Raabe, D.: Simulation of Texture and Anisotropy during Metal Forming with Respect to Scaling Aspects. Lecture at the 1st Colloquium on Process Scaling, Bremen (2003)
Raabe, D.: Experiments and Theory of Surface- and Polycrystal Mechanics. Colloquium Lecture at the Technical University of Hamburg-Harburg, Hamburg-Harburg (2003)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Raabe, D.: Experimental and Theoretical Investigation of Grain Scale Plasticity. Colloquium lecture at the Department of Materials Science and Engineering of Northwestern University, Evanston, Chicago, USA (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.