Oh, D. M.; Wippermann, S. M.; Schmidt, W. G.; Yeom, H. W.: Oxygen adsorbates on the Si(111)4x1-In metallic atomic wire: Scanning tunneling microscopy and density-functional theory calculations. Physical Review B 90 (15), 155432 (2014)
Wippermann, S. M.; Schmidt, W. G.: Entropy Explains Metal-Insulator Transition of the Si(111)-In Nanowire Array. Physical Review Letters 105 (12), 126102 (2010)
Wippermann, S. M.; Schmidt, W. G.: Water adsorption on clean Ni(111) and p(2x2)-Ni(111)-O surfaces calculated from first principles. Physical Review B 78 (23), 235439 (2008)
Wippermann, S. M.; Koch, N.; Schmidt, W. G.: Adatom-induced conductance modification of in nanowires: Potential-well scattering and structural effects. Physical Review Letters 100 (10), 106802 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.