Mich, J.; da Silva, A.; Ning, D.; Li, T.; Raabe, D.; Böhm, B.; Dreizler, A.; Hasse, C.; Scholtissek, A.: Modeling the oxidation of iron microparticles during the reactive cooling phase. Proceedings of the Combustion Institute 40 (1-4), 105538 (2024)
Pei, Z.; Yin, J.; Liaw, P. K.; Raabe, D.: Author Correction: Toward the design of ultrahigh-entropy alloys via mining six million texts. Nature Communications 14 (1), 3588 (2023)
Sukumar Prithiv, T.; Gault, B.; Li, Y.; Andersen, D.; Valle, N.; Eswara, S.; Ponge, D.; Raabe, D.: Austenite grain boundary segregation and precipitation of boron in low-C steels and their role on the heterogeneous nucleation of ferrite. Acta Materialia 252, 118947 (2023)
Kishida, K.; Okutani, M.; Suzuki, H.; Inui, H.; Heilmaier, M.; Raabe, D.: Room-temperature deformation of single crystals of the sigma-phase compound FeCr with the tetragonal D8b structure investigated by micropillar compression. Acta Materialia 249, 118829 (2023)
Pei, Z.; Yin, J.; Liaw, P. K.; Raabe, D.: Toward the design of ultrahigh-entropy alloys via mining six million texts. Nature Communications 14, 54 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.