Zaefferer, S.; Shan, Y.; Madivala, M.: Nano-indentation and electron channeling contrast imaging (ECCI) to understand the interaction of hydrogen and dislocations in a high-Mn TWIP steel. Euromat 2019, Stockholm, Sweden (2019)
Zaefferer, S.; Shan, Y.; Madivala, M.: Combination of nano-indentation and electron channeling contrast imaging (ECCI) to understand the interaction of hydrogen and dislocations in a high-Mn TWIP steel. Nanobrücken 2018, Erlangen, Germany (2018)
Shan, Y.: Investigation on the Influence of Hydrogen on Dislocation Formation during Nanoindentation in TWIP Steels. Master, RWTH Aachen, Aachen, Germany (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…