Saksena, A.; Sun, B.; Dong, X.; Khanchandani, H.; Ponge, D.; Gault, B.: Optimizing site-specific specimen preparation for atom probe tomography by using hydrogen for visualizing radiation-induced damage. International Journal of Hydrogen Energy 50 (Part A), pp. 165 - 174 (2024)
Elkot, M.; Sun, B.; Zhou, X.; Ponge, D.; Raabe, D.: On the formation and growth of grain boundary k-carbides in austenitic high-Mn lightweight steels. Materials Research Letters 12 (1), pp. 10 - 16 (2024)
Shi, H.; Nandy, S.; Cheng, H.; Sun, B.; Ponge, D.: In-situ investigation of the interaction between hydrogen and stacking faults in a bulk austenitic steel. Acta Materialia 262, 119441 (2024)
Sukumar Prithiv, T.; Gault, B.; Li, Y.; Andersen, D.; Valle, N.; Eswara, S.; Ponge, D.; Raabe, D.: Austenite grain boundary segregation and precipitation of boron in low-C steels and their role on the heterogeneous nucleation of ferrite. Acta Materialia 252, 118947 (2023)
Narasimha Sasidhar, K.; Zhou, X.; Rohwerder, M.; Ponge, D.: On the phase transformation pathway during localized grain boundary oxidation in an Fe-10 at% Cr alloy at 200°C. Corrosion Science 214, 111016 (2023)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.