Yoo, S.-H.; Aota, L. S.; Shin, S.; El-Zoka, A. A.; Kang, P. W.; Lee, Y.; Lee, H.; Kim, S.-H.; Gault, B.: Dopant Evolution in Electrocatalysts after Hydrogen Oxidation Reaction in an Alkaline Environment. ACS Energy Letters 8 (8), pp. 3381 - 3386 (2023)
Yoo, S.-H.; Siemer, N.; Todorova, M.; Marx, D.; Neugebauer, J.: Deciphering Charge Transfer and Electronic Polarization Effects at Gold Nanocatalysts on Reduced Titania Support. The Journal of Physical Chemistry C 123 (9), pp. 5495 - 5506 (2019)
Kim, C.-E.; Yoo, S.-H.; Bahr, D. F.; Stampfl, C.; Soon, A.: Uncovering the Thermo-Kinetic Origins of Phase Ordering in Mixed-Valence Antimony Tetroxide by First-Principles Modeling. Inorganic Chemistry 56 (11), pp. 6545 - 6550 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.