Cautaerts, N.; Rauch, E. F.; Jeong, J.; Dehm, G.; Liebscher, C.: Investigation of the orientation relationship between nano-sized G-phase precipitates and austenite with scanning nano-beam electron diffraction using a pixelated detector. Scripta Materialia 201, 113930 (2021)
Jeong, J.; Jang, W.-S.; Kim, K. H.; Kostka, A.; Gu, G.; Kim, Young, Y.-M.; Oh, S. H.: Crystallographic Orientation Analysis of Nanocrystalline Tungsten Thin Film Using TEM Precession Electron Diffraction and SEM Transmission Kikuchi Diffraction. Microscopy and Microanalysis 27 (2), pp. 237 - 249 (2021)
Kiener, D.; Jeong, J.; Alfreider, M.; Konetschnik, R.; Oh, S. H.: Prospects of using small scale testing to examine different deformation mechanisms in nanoscale single crystals - A case study in Mg. Crystals 11 (1), 61 (2021)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Industrial Technology (KITECH), Seoul, South Korea (2019)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Materials Science (KIMS), Seoul, South Korea (2019)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Science and Technology (KIST), Seoul, South Korea (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. KSM Annual Fall Conference 2019, Gyeongju, South Korea (2019)
Jeong, J.; Kim, J.; Kiener, D.; Oh, S. H.: In-situ TEM observation of twin-dominated deformation of Mg single crystals. KSM Annual Fall Conference 2019, Gyeongju, South Korea (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. Joint Max-Planck-Institut für Eisenforschung MPIE) / Ernst Ruska-Centre (ER-C) Workshop, Düsseldorf, Germany (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. International Workshop on Advanced In Situ Microscopies
of Functional Nanomaterials and Devices (IAMnano 2019), Düsseldorf, Germany (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.