Park, J.-M.; Choe, J.; Kim, J. G.; Bae, J. W.; Moon, J.; Yang, S.; Kim, K. T.; Yu, J.-H.; Kim, H. S.: Superior tensile properties of 1C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Materials Research Letters 8 (1), pp. 1 - 7 (2020)
Zhao, Y.; Park, J.-M.; Lee, D.-H.; Song, E. J.; Suh, J.-Y.; Ramamurty, U.; Jang, J.-i.: Influences of hydrogen charging method on the hydrogen distribution and nanomechanical properties of face-centered cubic high-entropy alloy: A comparative study. Scripta Materialia 168, pp. 76 - 80 (2019)
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.