Gambino, D.; Alling, B.: Lattice relaxations in disordered Fe-based materials in the paramagnetic state from first principles. Physical Review B 98 (6), 064105 (2018)
Ektarawong, A.; Simak, S. I.; Alling, B.: Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles. Physical Review B 97 (17), 174104 (2018)
Gharavi, M.; Armiento, R.; Alling, B.; Eklund, P.: Theoretical study of phase stability, crystal and electronic structure of MeMgN2 (Me = Ti, Zr, Hf) compounds. Journal of Materials Science: Materials in Electronics 53 (6), pp. 4294 - 4305 (2018)
Mozafari, E.; Alling, B.; Belov, M. P.; Abrikosov, I. A.: Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture. Physical Review B 97 (3), 035152 (2018)
Ektarawong, A.; Simak, S. I.; Alling, B.: First-principles prediction of stabilities and instabilities of compounds and alloys in the ternary B-As-P system. Physical Review B 96 (2), 024202 (2017)
Ektarawong, A.; Simak, S. I.; Alling, B.: Thermodynamic stability and properties of boron subnitrides from first principles. Physical Review B 95 (6), 064206 (2017)
Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, I. A.: Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations. Physical Review B 94 (5), 054111 (2016)
Ektarawong, A.; Simak, S. I.; Alling, B.: Carbon-rich icosahedral boron carbides beyond B4 C and their thermodynamic stabilities at high temperature and pressure from first principles. Physical Review B 94 (5), 054104 (2016)
Olovsson, W.; Alling, B.; Magnuson, M.: Structure and Bonding in Amorphous Cr1-xCx Nanocomposite Thin Films: X-ray Absorption Spectra and First-Principles Calculations. The Journal of Physical Chemistry C 120 (23), pp. 12890 - 12899 (2016)
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.