Sreekala, L.; Dey, P.; Hickel, T.; Neugebauer, J.: Unveiling nonmonotonic chemical trends in the solubility of H in complex Fe–Cr–Mn carbides by means of ab initio based approaches. Physical Review Materials 6 (1), 014403 (2022)
Hickel, T.; McEniry, E.; Nazarov, R.; Dey, P.: Ab initio basierte Simulation zur Wasserstoffversprödung in hoch-Mn Stählen. Seminar der Staatlichen Materialprüfungsanstalt Darmstadt, Institut für Werkstoffkunde, Darmstadt, Germany (2020)
Dey, P.: Materials design based on ab initio methods: Coherent microstructure & its impact on real application. Seminar at TU Delft, Delft, The Netherlands (2018)
Dey, P.; Yao, M.; Friák, M.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab-initio investigation of the role of kappa carbide in upgrading Fe–Mn–Al–C alloy to the class of advanced high-strength steels. ArcelorMittal Global R&D Gent, Thessaloniki, Greece (2017)
Dey, P.: Ab initio investigation of the interaction of hydrogen with carbides in advanced high-strength steels. Seminar at Southern University of Science and Technology, Shenzhen, China (2017)
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.