Merz, A.; Rohwerder, M.: The protection zone: A long-range corrosion protection mechanism around conducting polymer particles in composite coatings: Part II. PEDOT: PSS. Journal of the Electrochemical Society 166 (12), pp. C314 - C320 (2019)
Merz, A.; Uebel, M.; Rohwerder, M.: The Protection Zone: A Long-Range Corrosion Protection Mechanism around Conducting Polymer Particles in Composite Coatings: Part I. Polyaniline and Polypyrrole. Journal of the Electrochemical Society 166 (12), pp. C304 - C313 (2019)
Merz, A.; Rohwerder, M.: Corrosion protection by composite coatings containing conducting polymer particles: elucidation of the “protection zone”. 232nd ECS Fall Meeting 2017, National Harbour, USA (2017)
Merz, A.; Uebel, M.; Rohwerder, M.: Investigation of the role of protection zone around conducting polymer in composite coatings in inhibiting delamination process. Gordon Research Conferences 2016, New London, NH, USA (2016)
Merz, A.; Uebel, M.; Rohwerder, M.: Investigation of the role of protection zone around conducting polymer in composite coatings in inhibiting delamination process. Gordon Research Seminars 2016, New London, NH, USA (2016)
Merz, A.: Investigation of the “Protection Zone”, a novel mechanism to inhibit delamination of composite organic coatings containing conducting polymer. Dissertation, Ruhr-Universität Bochum (2019)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.