Choi, W. S.; De Cooman, B. C.: Effect of Carbon on the Damping Capacity and Mechanical Properties of Thermally Trained Fe–Mn Based High Damping Alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 700, pp. 641 - 648 (2017)
Lee, C. W.; Choi, W. S.; Cho, Y. R.; De Cooman, B. C.: Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel. Metallurgical and Materials Transactions A 47 (6), pp. 2875 - 2884 (2016)
Lee, C. W.; Choi, W. S.; Cho, Y. R.; De Cooman, B. C.: Microstructure evolution of a 55 wt.% Al–Zn coating on press hardening steel during rapid heating. Surface and Coatings Technology 281, pp. 35 - 43 (2015)
Choi, W. S.; De Cooman, B. C.; Sandlöbes, S.; Raabe, D.: Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars. Acta Materialia 98, 12304, pp. 391 - 404 (2015)
Choi, W. S.: Deformation mechanisms and the role of interfaces in face-centered cubic Fe-Mn-C micro-pillars. Dissertation, RWTH Aachen, Aachen, Germany (2018)
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…