Winning, M.: 3D EBSD measurements in ultra fine grained Cu 0.17wt% Zr obtained from ECAP. Seminar talk, Carnegie Mellon University, Pittsburgh, PA, USA (2008)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Three-dimensional tomographic EBSD measurements of the crystal topology in heavily deformed ultra fine grained pure Cu and Cu–0.17wt%Zr obtained from ECAP and HPT. DPG Frühjahrstagung 2008, Berlin, Germany (2008)
Winning, M.: Grain boundary engineering by application of mechanical stresses. The Third International Conference on Recrystallization and Grain Growth, Jeju Island, South Korea (2007)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. The Third International Conference on Recrystallization and Grain Growth, Jeju Island, South Korea (2007)
Winning, M.: Korngrenzen auf Wanderschaft: Wege zum Design metallischer Werkstoffe. Colloquia Academia, Akademie der Wissenschaften und der Literatur, Mainz, Germany (2007)
Winning, M.: Korngrenzen auf Wanderschaft: Wege zum Design metallischer Werkstoffe. Colloquia Academia, Akademie der Wissenschaften und der Literatur, Mainz, Germany (2006)
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.