Borchers, C.; Arlt, J.; Nowak, C.; Gärtner, F.; Hammerschmidt, M.; Kreye, H.; Volkert, C.; Kirchheim, R.: Influence of element distribution on mechanical properties in the bonding zone of explosively welded steels. Scripta Materialia 199, 113860 (2021)
Kresse, T.; Borchers, C.; Kirchheim, R.: Vacancy-carbon complexes in bcc iron: Correlation between carbon content, vacancy concentration and diffusion coefficient. Scripta Materialia 69 (9), pp. 690 - 693 (2013)
Li, Y.; Choi, P.-P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing. Ultramicroscopy 132, pp. 233 - 238 (2013)
Herbig, M.; Ponge, D.; Gault, B.; Borchers, C.; Raabe, D.: Segregation and phase transformation at dislocations during aging in a Fe-9%Mn steel studied by correlative TEM-atom probe tomography. MSE 2014, Darmstadt, Germany (2014)
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.