Kühbach, M. T.; Kasemer, M.; Gault, B.; Breen, A. J.: Open and strong-scaling tools for atom-probe crystallography: high-throughput methods for indexing crystal structure and orientation. Journal of Applied Crystallography 54 (Pt 5), pp. 1490 - 1508 (2021)
Kühbach, M. T.; London, A. J.; Wang, Jing, J.; Schreiber, D. K.; Mendez Martin, F.; Ghamarian, I.; Bilal, H.; Ceguerra, A. V.: Community-Driven Methods for Open and Reproducible Software Tools for Analyzing Datasets from Atom Probe Microscopy. Microscopy and Microanalysis, pp. 1 - 16 (2021)
Kühbach, M. T.; Roters, F.: Quantification of 3D spatial correlations between state variables and distances to the grain boundary network in full-field crystal plasticity spectral method simulations. Modelling and Simulation in Materials Science and Engineering 28, 055005 (2020)
Diehl, M.; Kühbach, M.: Coupled experimental-computational analysis of primary static recrystallization in low carbon steel. Modelling and Simulation in Materials Science and Engineering 28 (1), 014001 (2019)
Kühbach, M.; Breen, A. J.; Herbig, M.; Gault, B.: Building a Library of Simulated Atom Probe Data for Different Crystal Structures and Tip Orientations Using TAPSim. Microscopy and Microanalysis 25 (2), pp. 320 - 330 (2019)
Imran, M.; Kühbach, M.; Roters, F.; Bambach, M.: Development of a Model for Dynamic Recrystallization Consistent with the Second Derivative Criterion. Materials 10 (11), 1259, pp. 1 - 18 (2017)
Diehl, M.; Kühbach, M.; Kertsch, L.; Traka, K.; Raabe, D.: Coupled Experimental–Computational Analysis of Primary Static Recrystallization in Low Carbon Steel. Seminar of the Department of Mechanical Science and Engineering of the University of Illinois, Urbana-Champaign, Il, USA (2019)
Diehl, M.; Kühbach, M.; Raabe, D.: Experimental–computational analysis of primary static recrystallizazion in DC04 steel. 9th International Conference on Multiscale Materials Modeling , Osaka, Japan (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Funding ended January 2023 This group was concerned with the 3D mapping of hydrogen at near-atomic scale in metallic alloys with the aim to better understand hydrogen storage materials and hydrogen embrittlement.