Wang, Z.; Lu, W.; Min Song, F. A.; Ponge, D.; Raabe, D.; Li, Z.; Li, Z.: High stress twinning in a compositionally complex steel of very high stacking fault energy. Nature Communications 13, 3598 (2022)
Lu, E.; Zhao, J.; Makkonen, I.; Mizohata, K.; Li, Z.; Hua, M.; Djurabekova, F.; Tuomisto, F.: Enhancement of vacancy diffusion by C and N interstitials in the equiatomic FeMnNiCoCr high entropy alloy. Acta Materialia 215, 117093 (2021)
Guo, Y.; He, J.; Lu, W.; Jia, L.; Li, Z.: The evolution of compositional and microstructural heterogeneities in a TaMo0.5ZrTi1.5Al0.1Si0.2 high entropy alloy. Materials Characterization 172, 110836 (2021)
Wu, X.; Mayweg, D.; Ponge, D.; Li, Z.: Microstructure and deformation behavior of two TWIP/TRIP high entropy alloys upon grain refinement. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 802, 140661 (2021)
Zhu, S.; Yan, D.; Gan, K.; Lu, W.; Li, Z.: Awakening the metastability of an interstitial high entropy alloy via severe deformation. Scripta Materialia 191, pp. 96 - 100 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Funding ended January 2023 This group was concerned with the 3D mapping of hydrogen at near-atomic scale in metallic alloys with the aim to better understand hydrogen storage materials and hydrogen embrittlement.