Park, E.; Spiegel, M.: Effects of heat treatment on near surface elemental profiles of Fe–15Cr polycrystalline alloy. Corrosion Engineering, Science and Technology 40 (3), pp. 217 - 225 (2005)
Park, E.; Hüning, B.; Spiegel, M.: Annealing of Fe–15Cr alloy in N2–5%H2 gas mixture: Effect of hydrogen concentration. Defect and Diffusion Forum 237-240, p. 928 - 928 (2005)
Park, E.; Hüning, B.; Spiegel, M.: Evolution of near-surface concentration profiles of Cr during annealing of Fe–15Cr polycrystalline alloy. Applied Surface Science 249 (1-4), pp. 127 - 138 (2005)
Park, E.; Spiegel, M.: Development and Composition of the High Temperature Oxide Film Grown on Fe-15Cr during Annealing. Passivity 9, Paris, France, June 27, 2005 - July 01, 2005., (2005)
Park, E.; Hüning, B.; Spiegel, M.: Effects of heat treatment on the oxide layer of Fe–15 at.% Cr alloy surface. Proceedings of EUROCORR 04, Nice, France, 2004. Long Term Prediction and Modelling of Corrosion 1, (2004)
Park, E.; Spiegel, M.: Development and Composition of the High Temperature Oxide Film Grown on Fe-15Cr during Annealing. Passivity 9, Paris, France (2005)
Park, E.; Spiegel, M.: Oxidation resistance of alloys for flexible tubes in dry air and KCl containing atmospheres. Eurocorr 2005, Lisbon, Portugal (2005)
Park, E.; Hüning, B.; Borodin, S.; Rohwerder, M.; Spiegel, M.: Initial oxidation of Fe-Cr alloys: In situ STM amd ex-situ SEM studies. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...