Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2015/2016, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2015 - March 31, 2016
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2014/2015, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2014 - March 31, 2015
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2013/2014, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2013 - March 31, 2014
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2012/2013, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2012 - March 31, 2013
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Blockveranstaltung, Ruhr-Universität Bochum, Germany, March 21, 2011 - March 25, 2011
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2011/2012, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2011 - March 31, 2012
Neugebauer, J.; Hickel, T.: Moderne Computersimulations-Methoden in der Festkörperphysik. Lecture: Hands-on-Tutorial, Ruhr-Universität Bochum, Bochum, Germany, September 20, 2010 - September 24, 2010
Neugebauer, J.; Hickel, T.: Computerpraktikum: Moderne Computersimulationsmethoden in der Festkörperphysik. Lecture: Blockpraktikum, MPIE, Düsseldorf, Germany, September 20, 2010 - September 24, 2010
Hickel, T.: Moderne Computersimulations-Methoden in der Festkörperphysik. Lecture: Lectures and Exercises, Ruhr-Universität, Bochum, Germany, October 12, 2009 - February 05, 2010
Gomoll, T.: Ab initio Berechnung von Phononenspektren in Systemen mit reduzierter Symmetrie. Diploma, Technische Fachhochschule Berlin, Berlin, Germany (2008)
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
A wide range of steels is nowadays used in Additive Manufacturing (AM). The different matrix microstructure components and phases such as austenite, ferrite, and martensite as well as the various precipitation phases such as intermetallic precipitates and carbides generally equip steels with a huge variability in microstructure and properties.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…