Wang, X.; Grundmeier, G.: Thin multifunctional silver/fluorocarbon plasma polymer nanocomposite films on metals. The 9th International Conference on Nanostructured Materials, Rio de Janeiro, Brazil (2008)
Wang, X.; Grundmeier, G.: Combined spectroscopic, microscopic and electrochemical analysis of release properties of Ag-nanoparticles embedded in fluorocarbon plasma polymer films. The 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Wang, X.; Grundmeier, G.: Understanding of the Barrier and Release Properties of Thin Model Ag/HDFD-Plasma Polymer Nanocomposite Films. International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA, USA (2007)
Grundmeier, G.; Wang, X.; Barranco, V.; Ebbinghaus, P.: Structure and barrier properties of thin plasma polymers and metal/plasma polymer nanocomposite film. ACHEMA, Frankfurt a. M., Germany (2006)
Wang, X.; Grundmeier, G.: Investigation of Structure and Stability of Silver Nanoparticles in Fluorocarbon Plasma Polymer Films. 13. Bundesdeutsche Fachtagung für Plasmatechnologie, Bochum, Germany (2007)
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.