Mayweg, D.; Morsdorf, L.; Li, Y.; Herbig, M.: Correlation between grain size and carbon content in white etching areas in bearings. Acta Materialia 215, 117048 (2021)
Wu, X.; Mayweg, D.; Ponge, D.; Li, Z.: Microstructure and deformation behavior of two TWIP/TRIP high entropy alloys upon grain refinement. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 802, 140661 (2021)
Mayweg, D.; Morsdorf, L.; Wu, X.; Herbig, M.: The role of carbon in the white etching crack phenomenon in bearing steels. Acta Materialia 203, 116480 (2021)
Morsdorf, L.; Mayweg, D.; Li, Y.; Diederichs, A.; Raabe, D.; Herbig, M.: Moving cracks form white etching areas during rolling contact fatigue in bearings. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 771, 138659 (2020)
Morsdorf, L.; Mayweg, D.; Li, Y.; Diederichs, A.; Raabe, D.; Herbig, M.: Moving cracks and missing C atoms – chasing the mysteries of white etching areas in bearings. 2nd meeting of "Metallurgical Metallurgy for Plasticity-driven Damage and Fracture" research forum 2021 (ISIJ), virtual (2021)
Qin, Y.; Mayweg, D.; Tung, P.-Y.; Pippan, R.; Herbig, M.: Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Mayweg, D.; Morsdorf, L.; Wu, X.; Herbig, M.: The role of carbon in the white etching crack phenomenon in bearing steels. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Mayweg, D.: Microstructural characterization of white etching cracks in 100Cr6 bearing steel with emphasis on the role of carbon. Dissertation, RWTH Aachen University (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…