Bueno Villoro, R.: Electron microscopy investigations to understand the transport properties of energy materials. Physics Department, Technical University of Denmark, Kongens Lyngby, Denmark (2023)
Bueno Villoro, R.: Effect of grain boundary phases on the properties of half Heusler thermoelectrics. Northwestern University, Evanston, IL, USA (2023)
Bueno Villoro, R.: Application of NbTiFeSb half Heusler thermoelectric materials. Colloquium, Leibniz-Institut für Festkörper- und Werkstoffforschung, Dresden, Germany (2022)
Mattlat, D. A.; Bueno Villoro, R.; Jung, C.; Scheu, C.; Zhang, S.; Naderloo, R. H.; Nielsch, K.; He, .; Zavanelli, D.; Snyder, G. J.: Effective doping of InSbat the grain boundaries in Nb1-xTixFeSb based Half-Heusler thermoelectricsfor high electrical conductivity and Seebeckcoefficient. 40th International & 20th European Conference on Thermoelectrics, Krakow, Poland (accepted)
Bueno Villoro, R.; Zavanelli, D.; Jung, C.; Mattlat, D. A.; Naderloo, R. H.; Pérez, N. A.; Nielsch, K.; Snyder, G. J.; Scheu, C.; He, R.et al.; Zhang, S.: Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Microscopy of semiconducting materials conference, Cambridge, UK (2023)
Bueno Villoro, R.; Luo, T.; Bishara, H.; Abdellaoui, L.; Gault, B.; Wood, M.; Snyder, G. J.; Scheu, C.; Zhang, S.: Effect of grain boundaries on electrical conductivity in Ti(Co,Fe)Sb half Heusler thermoelectrics. 719. WE-Heraeus-Seminar, Understanding Transport Processes on the Nanoscale for Energy Harvesting Devices, online (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…