Haghighat, S. M. H.; Schäublin, R. E.: Obstacle strength of binary junction due to dislocation dipole formation: An in-situ transmission electron microscopy study. Journal of Nuclear Materials 465, pp. 648 - 652 (2015)
Haghighat, S. M. H.; Schäublin, R. E.; Raabe, D.: Atomistic simulation of the a0 <1 0 0> binary junction formation and its unzipping in body-centered cubic iron. Acta Materialia 64, pp. 24 - 32 (2014)
Schäublin, R. E.; Haghighat, S. M. H.: Molecular dynamics study of strengthening by nanometric void and Cr alloying in Fe. Journal of Nuclear Materials 442 (1-3 Suppl.1), pp. S643 - S648 (2013)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.