Güder, Ü.; Yavaş, A.; Çeken, M.; Yalçın, Ü.; Raabe, D.: A New Type of Steel-Making Crucible from Medieval Anatolia. 7th International Conference of Medieval Archaeology, online, Zagreb, Croatia (2020)
Raabe, D.: Theory-guided design of materials, microstructures and processes. Workshop on the Future of Materials Science, Institute of Nanotechnology, KIT, online, Karlsruhe, Germany (2020)
Raabe, D.; Diehl, M.; Shanthraj, P.; Sedighiani, K.; Roters, F.: Multi-scale and multi-physics simulations of chemo-mechanical crystal plasticity problems for complex engineering materials using DAMASK. Online Colloquium Lecture, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden (2020)
Kwiatkowski da Silva, A.; Ponge, D.; Gault, B.; Raabe, D.: The Relevance of Interfacial Segregation for Controlling Second Phase Precipitation in Advanced High Strength Steels. TMS 2020 Annual Meeting & Exhibition, San Diego, CA, USA (2020)
Sedighiani, K.; Traka, K.; Diehl, M.; Roters, F.; Bos, K.; Sietsma, J.; Raabe, D.: A Coupled Crystal Plasticity – Cellular Automaton Method for 3D Modeling of Recrystallization: Part I: Crystal Plasticity. International Conference on Plasticity, Damage, and Fracture, Riviera May, Mexico (2020)
Diehl, M.; Kusampudi, N.; Kusche, C.; Raabe, D.; Korte-Kerzel, S.: Combining Experiments, Simulations, and Data Science to Understand Damage in Dual Phase Steels. International Conference on Plasticity, Damage, and Fracture, Riviera May, Mexico (2020)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: Understanding the Plastic Behavior of Tungsten From First Principles to Crystal Plasticity. International Mechanical Engineering Congress & Exposition (IMECE) 2019, Salt Lake City, UT, USA (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
In order to estimate the kinetics of thermally activated processes, one must determine the energy of the transition state. This transition state is a first-order saddle point on the potential energy surface, i.e., it is a maximum along the reaction coordinate, but a minimum with respect to all other directions in configurational space. We have…
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…