Gutierrez-Urrutia, I.; Dick, A.; Hickel, T.; Neugebauer, J.; Raabe, D.: Understanding TWIP steel microstructures by using advanced electron microscopy and ab initio predictions. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Gutierrez-Urrutia, I.; Raabe, D.: The influence of planar slip and deformation twinning on mechanical behavior in TWIP steels. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Jia, N.; Raabe, D.; Zhao, X.: Experiments and Modeling on the development of deformation textures in f.c.c. materials. International Conference on Processing & Manufacturing of Advanced Materials, THERMEC 2011, Québec City, QC, Canada (2011)
Zheng, C. W.; Raabe, D.; Li, D. Z.: Numerical Simulation of Dynamic Strain-induced austenite-ferrite transformation and post-dynamic kinetics in a low carbon steel. THERMEC 2011, 7th international conference on processing and manufacturing of advanced materials, Québec City, QC, Canada (2011)
Fabritius, H.; Nikolov, S.; Hild, S.; Ziegler, A.; Friák, M.; Neugebauer, J.; Raabe, D.: Design principles of crustacean cuticle: From molecules to skeletal elements. Workshop „From Nanoparticle Assembly to Functional Polymer Components” at Department of Geo- and Environmental Sciences, LMU, München, Germany (2011)
Krüger, T.: Particle-resolved simulation of blood in simple shear flow: Shear-thinning behavior and its microscopic origin(s). Institut für Festkörperforschung, FZ Jülich, Jülich, Germany (2011)
Raabe, D.; Gutierrez-Urrutia, I.: Effect of strain path and texture on microstructure in Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. 1st International Conference on High Manganese Steels 2011, Seoul, South Korea (2011)
Steinmetz, D.; Roters, F.; Eisenlohr, P.; Raabe, D.: A dislocation density-based constitutive model for TWIP steels. 1st International Conference on High Manganese Steels, Seoul, South Korea (2011)
Wu, X.; Erbe, A.; Fabritius, H. O.; Raabe, D.: Structure and function of the biological photonic crystals in the scales of a beetle. European Materials Research Society E-MRS Spring Meeting 2011, May 2011, Nice, France (2011)
Raabe, D.: Atomistic understanding of hundred-thousand tons. Bernkastel-Kues Workshop on Possibilities and Limitations of Quantitative Materials Modeling and Characterization, Bernkastel-Kues, Germany (2011)
Tasan, C. C.; Zaefferer, S.; Raabe, D.: Deformation induced dislocation interactions near martensite-ferrite phase boundaries. MRS Fall Meeting 2011, San Francisco, CA, USA (2011)
Roters, F.; Eisenlohr, P.; Raabe, D.: Eine modulare Kristallplastizitäts Implementierung für Anwendungen vom Einkristall bis zum Bauteil. 14. Workshop Simulation in der Umformtechnik, Dortmund, Germany (2011)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.