Brognara, A.; Bricci, B. R.; William, L.; Brinza, O.; Konstantakopoulou, M.; Li Bassi, A.; Ghidelli, M.; Lidgi-Guigui, N.: New Mechanism for Long Photo-Induced Enhanced Raman Spectroscopy in Au Nanoparticles Embedded in TiO2. Small; This article also appears in: Hot Topic: Surfaces and Interfaces; Rising Stars 18 (25), 2201088 (2022)
Brognara, A.; Nasri, I. F. M. A.; Bricchi, B. R.; Li Bassi, A.; Gauchotte-Lindsay, C.; Lidgi-Guigui, N.: Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles. Beilstein Journal of Nanotechnology 11, pp. 1026 - 1035 (2020)
Mascaretti, L.; Niorettini, A.; Bricchi, B. R.; Ghidelli, M.; Naldoni, A.; Caramori, S.; Li Bassi, A.; Berardi, S.: Syngas Evolution from CO2 Electroreduction by Porous Au Nanostructures. ACS Applied Energy Materials 3 (5), pp. 4658 - 4668 (2020)
Vacirca, D.; Bignoli, F.; Li Bassi, A.; Best, J. P.; Dehm, G.; Faurie, D.; Djemia, P.; Ghidelli, M.: Boosting mechanical properties of thin film high entropy alloys through nanoengineering design strategies. 16th International Conference on Local Mechanical Properties, Prague, Czech Republic (2024)
Brognara, A.; Nasri, I. F. M. A.; Bricchi, B. R.; Li Bassi, A.; Gauchotte, C.; Ghidelli, M.; Lidgi-Guigui, N.: Detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles. Applied Nanotechnology and Nanoscience International Conference – ANNIC 2019, Paris, France (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.