Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: The role of cementite on the hydrogen embrittlement mechanism in martensitic medium-carbon steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 859, 144204 (2022)
Pinson, M.; Springer, H.; Verbeken, K.; Depover, T.: The effect of an Al-induced ferritic microfilm on the hydrogen embrittlement mechanism in martensitic steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 851, 143587 (2022)
Pinson, M.; Das, S. M.; Springer, H.; Verbeken, K.; Depover, T.: The Role of an Al-induced Ferritic Microfilm in Martensitic Steels on the Hydrogen Embrittlement Mechanisms Revealed by Advanced Microscopic Characterization. Microscopy and Microanalysis 28 (S1), pp. 1622 - 1624 (2022)
Pinson, M.; Das, S. M.; Springer, H.; Depover, T.; Verbeken, K.: The addition of aluminum to brittle martensitic steels in order to increase ductility by forming a grain boundary ferritic microfilm. Scripta Materialia 213, 114606 (2022)
Pinson, M.; Nikolic, K.; Springer, H.; Depover, T.; Verbeken, K.: Comparison between the hydrogen embrittlement behavior of an industrial and a lightweight bearing steel. Procedia Structural Integrity 42, pp. 471 - 479 (2022)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: The effect of quench cracks and retained austenite on the hydrogen trapping capacity of high carbon martensitic steels. International Journal of Hydrogen Energy 46 (29), pp. 16141 - 16152 (2021)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: Qualification of the in-situ bending technique towards the evaluation of the hydrogen induced fracture mechanism of martensitic Fe–C steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 792, 139754 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…