Ma, Y.; Villanova, J.; Requena, G.; Raabe, D.: Understanding the physical-chemical phenomena in green steel production using synchrotron X-ray techniques. European Synchrotron Radiation Facility User Meeting 2022, Online (2022)
Ma, Y.; Zaefferer, S.; Raabe, D.: Hydrogen-based direct reduction of iron ores: Microstructure, crystallography, and reduction mechanisms. 2021 International Metallurgical Processes Workshop for Young Scholars (IMPROWYS2021), a hybrid event, Online (2021)
Ma, Y.: Materials Characterization – Introduction to X-ray Diffraction. Lecture: International Max Planck Research School for Interface Controlled Materials for Energy Conversion (IMPRSURMAT), online, 2021-08
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…