Siboni, N. H.; Raabe, D.; Varnik, F.: Maintaining the equipartition theorem in small heterogeneous molecular dynamics ensembles. Physical Review E 87 (3), pp. 030101-1 - 030101-4 (2013)
Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite. Acta Materialia 61 (5), pp. 1773 - 1784 (2013)
Seol, J.-B.; Raabe, D.; Choi, P.; Park, H. S.; Kwak, J. H.; Park, C. G.: Direct evidence for the formation of ordered carbides in a ferrite based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scripta Materialia 68 (6), pp. 348 - 353 (2013)
Titrian, H.; Aydin, U.; Friák, M.; Ma, D.; Raabe, D.; Neugebauer, J.: Self-consistent scale-bridging approach to compute the elasticity of multi-phase polycrystalline materials. Materials Research Society Symposia Proceedings 1524, pp. 17 - 23 (2013)
Gutiérrez-Urrutia, I.; Raabe, D.: Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scripta Materialia 68 (6), pp. 343 - 347 (2013)
Pinto de Siqueira, R.; Sandim, H. R. Z.; Raabe, D.: Particle Stimulated Nucleation in Coarse-Grained Ferritic Stainless Steel. Metallurgical and Materials Transactions A 44 (1), pp. 469 - 478 (2013)
Woldemedhin, M. T.; Raabe, D.; Hassel, A. W.: Characterization of thin anodic oxides of Ti–Nb alloys by electrochemical impedance spectroscopy. Electrochimica Acta 82, pp. 324 - 332 (2012)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Exploring the p-n junction region in Cu(In,Ga)Se2 thin-film solar cells at the nanometer-scale. Applied Physics Letters 101 (18), pp. 181603-1 - 181603-5 (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.