Polin, N.; Giron, S.; Adabifiroozjaei, E.; Yang, Y.; Saxena, A.; Gutfleisch, O.; Gault, B.: Atomic‐scale insights to design of high‐performing SmCo based sintered permanent magnets gained by atom probe tomography. 12th International Conference on Magnetic and Superconducting Materials (MSM22), Duisburg, Germany (2022)
Gault, B.: Pushing the analytical limits of atom probe tomography via cryo-enabled workflows. Microscience Microscopy Congress 2021, online, Oxford, UK (2021)
Gault, B.; Guillon, O.: Du térawatt au picomètre: Voyage au cœur des technologies de l’hydrogène. Café des Sciences de l’Ambassade de France en Allemagne, online, Berlin, Germany (2021)
Gault, B.: Advancing corrosion understanding with (cryo-) Atom Probe Tomography. Imperial College London - Rolls Royce corrosion seminar, online, London, UK (2021)
Gault, B.: Machine-Learning for Atom Probe Tomography. Workshop 'Research-data management, machine learning and material informatics for Superalloys', online, Bochum, Germany (2021)
Gault, B.: Introduction to atom probe tomography: performance and opportunities in characterizing microstructures. Metallic Microstructures: European Lectures Online (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…