Sukumar Prithiv, T.; Gault, B.; Li, Y.; Andersen, D.; Valle, N.; Eswara, S.; Ponge, D.; Raabe, D.: Austenite grain boundary segregation and precipitation of boron in low-C steels and their role on the heterogeneous nucleation of ferrite. Acta Materialia 252, 118947 (2023)
Narasimha Sasidhar, K.; Zhou, X.; Rohwerder, M.; Ponge, D.: On the phase transformation pathway during localized grain boundary oxidation in an Fe-10 at% Cr alloy at 200°C. Corrosion Science 214, 111016 (2023)
Varanasi, R. S.; Gault, B.; Ponge, D.: Effect of Nb micro-alloying on austenite nucleation and growth in a medium manganese steel during intercritical annealing. Acta Materialia 229, 117786 (2022)
Aota, L. S.; Souza Filho, I. R.; Roscher, M.; Ponge, D.; Sandim, H. R. Z.: Strain hardening engineering via grain size control in laser powder-bed fusion. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 838, 142773 (2022)
Wang, X.; Liu, C.; Sun, B.; Ponge, D.; Jiang, C.; Raabe, D.: The dual role of martensitic transformation in fatigue crack growth. Proceedings of the National Academy of Sciences of the United States of America 119 (9), e2110139119 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.