Zhang, J.: Microstructure design via site-specific control of recrystallization and nano-precipitation. Dissertation, RWTH Aachen, Aachen, Germany (2016)
Szczepaniak, A.: Investigation of intermetallic layer formation in dependence of process parameters during the thermal joining of aluminium with steel. Dissertation, RWTH Aachen, Aachen, Germany (2016)
Nellessen, J.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel and aluminum. Dissertation, RWTH Aachen, Aachen, Germany (2015)
Diehl, M.: High Resolution Crystal Plasticity Simulations. Dissertation, Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany (2015)
Hamidi Siboni, N.: Molecular Dynamics Studies of Thermodynamical Consistency and Non-locality of Effective Temperature. Dissertation, Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany (2014)
Schemmann, L.: The inheritance of different microstructures found after hot rolling on the properties of a completely annealed dual phase steel. Dissertation, Fakultät für Georessourcen und Materialtechnik, RWTH Aachen, Aachen, Germany (2014)
Jäpel, T.: Feasibility study on local elastic strain measurements with an EBSD pattern cross correlation method in elastic-plastically deforming material. Dissertation, RWTH Aachen, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Understanding the deformation mechanisms observed in high performance materials, such as superalloys, allows us to design strategies for the development of materials exhibiting enhanced performance. In this project, we focus on the combination of structural information gained from electron microscopy and compositional measurements from atom probe…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
Deviations from the ideal, stoichiometric composition of tcp (tetrahedrally close-packed) intermetallic phases as, e.g., Laves phases can be partially compensated by point defects like antisite atoms or vacancies, but also planar defects may offer an opportunity to accommodate excess atoms.