Zaefferer, S.: Some topics of experimental texture and microstructure research at the MPIE. Intern. Workshop on Modern Texture Research in Engineering Materials (MoteX), Düsseldorf (2003)
Zaefferer, S.: Microstructural characterization of low alloyed TRIP steels by SEM and TEM techniques. Seminar des Instituts für Eisenhüttenkunde der RWTH Aachen, RWTH Aachen, Germany (2003)
Zaefferer, S.: Microtexture measurements: A powerful tool to understand microstructures. Fachvortrag bei der Sitzung des Fachbeirates des Instituts, Düsseldorf, Düsseldorf (2003)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Archie, F. M. F.; Zaefferer, S.: Micro-damage initiation in advanced high strength steels (AHSS): Influence of Prior Austenite Grain Boundaries. Meeting Materials 2016 - M2i - Materials innovation institute, Nieuwegein, The Netherlands (2016)
Stechmann, G.; Zaefferer, S.; Konijnenberg, P. J.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Port Elizabeth, South Africa (2016)
Stechmann, G.; Zaefferer, S.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Hamburg, Germany (2015)
Zaefferer, S.; Zhu, Z.; Reed, R. C.: Observation of Dislocation Evolution during Straining of a γ-γ’ Superalloy Single Crystal using the CECCI technique. Eurosuperalloys 2014, Giens, France (2014)
Archie, F. M. F.; Zaefferer, S.; Raabe, D.: The influence of grain boundary character on dislocation densities and fracture toughness in AHSS. M2i Conference "High Tech Materials: your world - our business", Sint Michielgestel, The Netherlands (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.