Mayweg, D.; Morsdorf, L.; Li, Y.; Herbig, M.: Correlation between grain size and carbon content in white etching areas in bearings. Acta Materialia 215, 117048 (2021)
Wu, X.; Mayweg, D.; Ponge, D.; Li, Z.: Microstructure and deformation behavior of two TWIP/TRIP high entropy alloys upon grain refinement. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 802, 140661 (2021)
Mayweg, D.; Morsdorf, L.; Wu, X.; Herbig, M.: The role of carbon in the white etching crack phenomenon in bearing steels. Acta Materialia 203, 116480 (2021)
Morsdorf, L.; Mayweg, D.; Li, Y.; Diederichs, A.; Raabe, D.; Herbig, M.: Moving cracks form white etching areas during rolling contact fatigue in bearings. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 771, 138659 (2020)
Morsdorf, L.; Mayweg, D.; Li, Y.; Diederichs, A.; Raabe, D.; Herbig, M.: Moving cracks and missing C atoms – chasing the mysteries of white etching areas in bearings. 2nd meeting of "Metallurgical Metallurgy for Plasticity-driven Damage and Fracture" research forum 2021 (ISIJ), virtual (2021)
Qin, Y.; Mayweg, D.; Tung, P.-Y.; Pippan, R.; Herbig, M.: Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Mayweg, D.; Morsdorf, L.; Wu, X.; Herbig, M.: The role of carbon in the white etching crack phenomenon in bearing steels. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Mayweg, D.: Microstructural characterization of white etching cracks in 100Cr6 bearing steel with emphasis on the role of carbon. Dissertation, RWTH Aachen University (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…