Pedrazzini, S.; Pek, M.; Ackerman, A.; Cheng, Q.; Ali, H.; Ghadbeigi, H.; Mumtaz, K.; Dessolier, T.; Britton, B.; Bajaj, P.et al.; Aime Jägle, E.; Gault, B.; London, A. J.; Galindo-Nava, E.: Effect of Substrate Bed Temperature on Solute Segregation and Mechanical Properties in Ti–6Al–4V Produced by Laser Powder Bed Fusion. Metallurgical and Materials Transactions A 54 (8), pp. 3069 - 3085 (2023)
Aota, L. S.; Bajaj, P.; Sandim, H. R. Z.; Jägle, E. A.: Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders. Materials 13 (18), 3922 (2020)
Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E. A.: Steels in additive manufacturing: A review of their microstructure and properties. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 772, 138633 (2020)
Bajaj, P.; Gupta, A.; Jägle, E. A.; Raabe, D.: Precipitation kinetics during non-linear heat treatment in Laser Additive Manufacturing. International Conference on Advanced Materials and Processes, ‘ADMAT 2017’ SkyMat, Thiruvananthapuram, India (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…