Herbig, M.; Choi, P.-P.; Raabe, D.: Atom Probe Tomography and Correlative TEM/APT at the MPIE. Mini-Symposium Atom Probe Tomography, National APT Facility Eindhoven, TU Delft, Delft, The Netherlands (2014)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: High Throughput Quantification of Grain Boundary Segregation by Correlative Transmission Electron Microscopy and Atom Probe Tomography. International Conference on Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Herbig, M.; Raabe, D.; Li, Y. J.; Choi, P.; Zaefferer, S.; Goto, S.: Quantification of Grain Boundary Segregation in Nanocrystalline Material. Seminar at Department Microstructure Physics and Alloy Design, MPI für Eisenforschung, Düsseldorf, Germany (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. European Atom Probe Workshop 2013 at ETH Zürich, Zürich, Switzerland (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Euromat 2013, Sevilla, Spain (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Li, Y. J.; Choi, P.; Herbig, M.; Kostka, A.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Atomic Scale Understanding of 6.8 GPa Ultra-high Strength Pearlite. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, HI, USA (2013)
Raabe, D.; Choi, P.; Herbig, M.; Li, Y.; Zaefferer, S.; Kirchheim, R.: Iron – Mythology and High Tech: From Electronic Understanding to Bulk Nanostructuring of 1 Billion Tons. Summer School 2013 on Functional Solids – FERRUM - organized by Leibniz University Hannover, Goslar, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.