Zhao, H.; Gault, B.; Ponge, D.; Raabe, D.; De Geuser, F.: Parameter free quantitative analysis of atom probe data by correlation functions: Application to the precipitation in Al–Zn–Mg–Cu. Scripta Materialia 154, pp. 106 - 110 (2018)
Lai, M.; Li, Y.; Lillpopp, L.; Ponge, D.; Will, S.; Raabe, D.: On the origin of the improvement of shape memory effect by precipitating VC in Fe–Mn–Si-based shape memory alloys. Acta Materialia 155, pp. 222 - 235 (2018)
Kwiatkowski da Silva, A.; Inden, G.; Kumar, A.; Ponge, D.; Gault, B.; Raabe, D.: Competition between formation of carbides and reversed austenite during tempering of a medium-manganese steel studied by thermodynamic-kinetic simulations and atom probe tomography. Acta Materialia 147, pp. 165 - 175 (2018)
Dutta, A.; Ponge, D.; Sandlöbes, S.; Raabe, D.: Understanding hot vs. Cold rolled medium manganese steel deformation behavior using in situ microscopic digital image correlation. Materials Science Forum 941, pp. 198 - 205 (2018)
Luo, H.; Li, Z.; Chen, Y.-H.; Ponge, D.; Rohwerder, M.; Raabe, D.: Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel. Electrochemistry Communucations 79, pp. 28 - 32 (2017)
Tarzimoghadam, Z.; Ponge, D.; Klöwer, J.; Raabe, D.: Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation. Acta Materialia 128, pp. 365 - 374 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…