Raabe, D.; Ohsaki, S.; Hono, K.: Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Materialia 57, pp. 5254 - 5263 (2009)
Sun, D. K.; Zhu, M. F.; Pan, S. Y.; Raabe, D.: Numerical Modeling of dendritic growth in alloy solidification with forced convection. International Journal of Modern Physics B 23, pp. 1609 - 1614 (2009)
Verbeken, K.; Barbé, L.; Raabe, D.: Evaluation of the Crystallographic Orientation Relationships between FCC and BCC phases in TRIP Steels. ISIJ International 49 (10), pp. 1601 - 1609 (2009)
Verbeken, K.; van Caenegem, N.; Raabe, D.: Identification of ε-martensite in Fe-based shape memory alloy by means of EBSD. Micron 40, 1, pp. 151 - 156 (2009)
Winning, M.; Brahme, A.; Raabe, D.: Prediction of cold rolling textures of steels using an artificial neural network. Computational Materials Science 46, pp. 800 - 804 (2009)
Ma, D.; Friák, M.; Neugebauer, J.; Raabe, D.; Roters, F.: Multiscale simulation of polycrystal mechanics of textured β-Ti alloys using ab initio and crystal-based finite element methods. Physica Status Solidi B 245 (12), pp. 2642 - 2648 (2008)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Error-propagation in multiscale approaches to the elasticity of polycrystals. Physica Status Solidi (B) 245, pp. 2636 - 2641 (2008)
Al-Sawalmih, A.; Li, C.; Siegel, S.; Fabritius, H.; Yi, S. B.; Raabe, D.; Fratzl, P.; Paris, O.: Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster. Advanced Functional Materials 18 (20), pp. 3307 - 3314 (2008)
Nikolov, S.; Raabe, D.: Hierarchical Modeling of the Elastistic Properties of Bone at Submicron Scales: The Role of Extrafibrillar Mineralization. Biophysical Journal 94, pp. 4220 - 4232 (2008)
Bastos, A.; Zaefferer, S.; Raabe, D.: Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co–Ni films. Journal of Microscopy 230, pp. 487 - 498 (2008)
Cao, Y. P.; Xue, Z. Y.; Chen, X.; Raabe, D.: Correlation between the flow stress and the nominal indentation hardness of soft metals. Scripta Materialia 59, pp. 518 - 521 (2008)
Counts, W. A.; Friak, M.; Battaile, C. C.; Raabe, D.; Neugebauer, J.: A comparison of polycrystalline elastic constants computed by analytic homogenization schemes and FEM. Physica Status Solidi B 245, pp. 2630 - 2635 (2008)
Frommert, M.; Zobrist, C.; Lahn, L.; Böttcher, A.; Raabe, D.; Zaefferer, S.: Texture measurement of grain-oriented electrical steels after secondary recrystallization. Journal of Magnetism and Magnetic Materials 320, pp. e657 - e660 (2008)
Godara, A.; Raabe, D.: Microstrain localisation measurement in epoxy FRCs during plastic deformation using a digital image correlation technique coupled with scanning electron microscopy. Nondestructive Testing and Evaluation 3, pp. 229 - 240 (2008)
Herrera, C.; Ponge, D.; Raabe, D.: Characterization of the microstrcture, crystallographic texture and segregation of an as-cast duplex stainless steel slab. Steel Research International 79 (6), pp. 482 - 488 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…