Bieler, T. R.; Crimp, M. A.; Yang, Y.; Wang, L.; Eisenlohr, P.; Mason, D. E.; Liu, W.; Ice, G. E.: Strain Heterogeneity and Damage Nucleation at Grain Boundaries during Monotonic Deformation in Commercial Purity Titanium. Journal of Microscopy 61 (12), pp. 45 - 52 (2009)
Bieler, T. R.; Eisenlohr, P.; Roters, F.; Kumar, D.; Mason, D. E.; Crimp, M. A.; Raabe, D.: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. International Journal of Plasticity 25 (9), pp. 1655 - 1683 (2009)
Eisenlohr, P.; Milička, K.; Blum, W.: Dislocation glide velocity in creep of Mg-alloys derived from dip tests. Materials Science and Engineering A 510-511, pp. 393 - 397 (2009)
Eisenlohr, P.; Tjahjanto, D. D.; Hochrainer, T.; Roters, F.; Raabe, D.: Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes. International Journal of Materials Research 100 (4), pp. 500 - 509 (2009)
Kumar, P.; Kassner, M. E.; Blum, W.; Eisenlohr, P.; Langdon, T. G.: New observations on high-temperature creep at very low stresses. Materials Science and Engineering A 510-511, pp. 20 - 24 (2009)
Eisenlohr, P.; Sadrabadi, P.; Blum, W.: Quantifying the distributions of dislocation spacings and cell sizes. Journal of Materials Science 43, pp. 2700 - 2707 (2008)
Kumar, D.; Bieler, T. R.; Eisenlohr, P.; Mason, D. E.; Crimp, M. A.; Roters, F.; Raabe, D.: On Predicting Nucleation of Microcracks Due to Slip-Twin Interactions at Grain Boundaries in Duplex gamma-TiAl. Journal of Engineering and Materials Technology 130 (02), pp. 021012-1 - 021012-12 (2008)
Zeng, X. H.; Eisenlohr, P.; Blum, W.: Modelling the transition from strengthening to softening due to grain boundaries. Material Science and Engineering A 483-484, pp. 95 - 98 (2008)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Iso-Work-Rate Weighted-Taylor Homogenization Scheme for Multiphase Steels Assisted by Transformation-induced Plasticity Effect. Steel Research International 78 (10/11), pp. 777 - 783 (2007)
Eisenlohr, P.; Blum, W.: Bridging steady-state deformation behavior at low and high temperature by considering dislocation dipole annihilation. Material Science and Engineering A 400 - 401, pp. 175 - 181 (2005)
Eisenlohr, P.; Winning, M.; Blum, W.: Migration of subgrain boundaries under stress in bi- and multi-granular structures. Physica Status Solidi 200 (2), pp. 339 - 345 (2003)
Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 pp.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…