Rechmann, J.; Krzywiecki, M.; Erbe, A.: Carbon-Sulfur Bond Cleavage During Adsorption of Octadecane Thiol to Copper in Ethanol. Langmuir 35 (21), pp. 6888 - 6897 (2019)
Krzywiecki, M.; Grządziel, L.; Powroźnik, P.; Kwoka, M.; Rechmann, J.; Erbe, A.: Oxide – organic heterostructures: a case study of charge displacement absence at a SnO2 – copper phthalocyanine buried interface. Physical Chemistry Chemical Physics 20 (23), pp. 16092 - 16101 (2018)
Mondragón Ochooa, J. S.; Altin, A.; Rechmann, J.; Erbe, A.: Delamination Kinetics of Thin Film Poly(acrylate) Model Coatings Prepared by Surface Initiated Atom Transfer Radical Polymerization on Iron. Journal of the Electrochemical Society 165 (16), pp. C991 - C998 (2018)
Panther, J.; Rechmann, J.; Müller, T. J. J.: Fischer indole synthesis of 3-benzyl-1H-indole via conductive and dielectric heating. Chemistry of Heterocyclic Compounds 52 (11) (2016)
Rabe, M.; Rechmann, J.; Boyle, A. L.; Erbe, A.: Designing Electro Responsive Self-Assembled Monolayers Based on the Coiled-Coil Peptide Binding Motif. 17th International Conference on Organized Molecular Films” (ICOMF17), New York, NY, USA (2018)
Rechmann, J.: Electron transfer characteristics of gold and oxide-covered copper in aqueous electrolytes modified by self-assembled monolayers. ElecNano8, the 8th international conference on Electrochemistry in Nanosciences
, Nancy, France (2018)
Rechmann, J.: Oberflächenmodifizierung von Zink (Eisen) mit Ethinylphenothiazinen und Charakterisierung. Master, Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.