Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Phase transformation of Ni_2MnGa shape memory alloy from first principles: The pre-martensitic transition. PAW workshop 2007, Goslar, Germany (2007)
Uijttewaal, M.; Hickel, T.; Grabowski, B.; Neugebauer, J.: First ab initio determination of the phase transformation of Ni_{2}MnGa: The pre-martensitic transition. e-MRS 2007 Fall Meeting, Warsaw, Poland (2007)
Neugebauer, J.: First-principles calculations on CVD growth and doping in group-III-nitride semiconductors. EuroCVD16 - Sixteenth European Conference on Chemical Vapor Deposition, The Hague, The Netherlands (2007)
Grabowski, B.; Hickel, T.; Neugebauer, J.: From ab initio to materials properties: Accuracy and error bars of DFT thermodynamics. Euromat 2007, European Congress on Advanced Materials and Processes, Nürnberg, Germany (2007)
Hickel, T.; Grabowski, B.; Uijttewaal, M.; Neugebauer, J.: Ab initio prediction of structural and thermodynamic properties of magnetic shape memory alloys. Euromat 2007, European Congress on Advanced Materials and Processes, Nürnberg, Germany (2007)
Friák, M.; Neugebauer, J.: Ab initio study of the anomalous volume-composition effect in Fe–Al and Fe–Ga alloys. Euromat 2007, Nürnberg, Germany (2007)
Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Ab initio investigation of temperature dependent effects in Ni_{2}MnGa: The pre-martensitic transition. Convention of the SPP 1239, Castle Eichholz in Wesseling, Germany (2007)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Theory-guided design of Ti-binaries for human implants. XVI. International Materials Research Congress, Cancun (Merrida), Mexico (2007)
Petrov, M.; Lymperakis, L.; Neugebauer, J.; Stefaniuk, R.; Dluzewski, P.: Nonlinear Elastic Effects in Group III-Nitrides: From ab-initio to Finite Element Calculation. 17th International Conference on Computer Methods in Mechanics CMM-2007, Spala, Poland (2007)
Petrov, M.; Lymperakis, L.; Neugebauer, J.; Stefaniuk, R.; Dluzewski, P.: Nonlinear Elastic Effects in Group III-Nitrides: From ab-initio to Finite Element Calculation. 17th International Conference on Computer Methods in Mechanics CMM-2007, Spala, Poland (2007)
Neugebauer, J.: Thermodynamic versus Kinetic Stabilization of Short and Long-Range Order in Nitride Based Alloys. Multiscale approach to alloys: advances and challenges, Sigtuna, Sweden (2007)
Neugebauer, J.: Ab initio Determination of Thermodynamic Quantities: Status and Perspectives. The first Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification, Changsha, China (2007)
Hickel, T.; Grabowski, B.; Uijttewaal, M.; Neugebauer, J.: Determination of symmetry-reduced structures by a soft-phonon analysis in magnetic shape memory alloys. Physics Seminar of Loughborough University, Loughborough, UK (2007)
Neugebauer, J.: Computer assisted design of metastable alloys. Leibniz-Institut für Festkörper und Werkstoffforschung International Workshop, Dresden, Germany (2007)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Application of the 8-band k.p-formalism to semiconductor nanostructures. Forschergruppentreffen Uni Bremen, Bremen, Germany (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…